11332 - Summing Digits
Problem J: Summing Digits
For a positive integer n
, let f(n)
denote the sum of the digits of n
when represented in base 10. It is easy to see that the sequence of numbers n, f(n), f(f(n)), f(f(f(n))), ...
eventually becomes a single digit number that repeats forever. Let this single digit be denoted g(n)
.
For example, consider n = 1234567892
. Then:
f(n) = 1+2+3+4+5+6+7+8+9+2 = 47
f(f(n)) = 4+7 = 11
f(f(f(n))) = 1+1 = 2
Therefore, g(1234567892) = 2
.
Each line of input contains a single positive integer n
at most 2,000,000,000. For each such integer, you are to output a single line containing g(n)
. Input is terminated by n = 0
which should not be processed.
Sample input
2
11
47
1234567892
0
Output for sample input
2
2
2
2
Zachary Friggstad
#include<stdio.h>
int main()
{
char c[100];
int i,f,fff,ff,a,bb,ccc,aa,b,cc;
while(gets(c)!=EOF)
{
if(c[0]=='0')
{
break;
}
int sum=0;
int l=strlen(c);
for(i=0;i<l;i++)
{
sum=sum+c[i]-'0';
}
if(sum<10)
{
printf("%d\n",sum);
}
else
{
f=sum/10;
ff=sum%10;
fff=f+ff;
if(fff<10)
{
printf("%d\n",fff);
}
else
{
a=fff/10;
bb=fff%10;
ccc=f+ff;
if(ccc<10)
{
printf("%d\n",ccc);
}
else
{
aa=ccc/10;
b=ccc%10;
cc=aa+b;
if(cc<10)
{
printf("%d\n",cc);
}
}
}
}
}
return 0;
}
No comments:
Post a Comment